
This material exempt per Department of Commerce license exception TSU

Vivado HLS 2013.3 Version

Data Types

© Copyright 2013 Xilinx

After completing this module, you will be able to:

– State various data types of C, C++, and SystemC are supported
– Identify advantages and pitfalls of using arbitrary precision
– List various supported quantization and overflow modes
– Describe the floating point support

Objectives

Data Types 14- 2 © Copyright 2013 Xilinx

C and C++ Data Types

Arbitrary Precision Data Types

System C Data Types

Floating Point Support

Summary

Outline

Data Types 14- 3 © Copyright 2013 Xilinx

C and C++ have standard types created on the 8-bit boundary

– char (8-bit), short (16-bit), int (32-bit), long long (64-bit)
• Also provides stdint.h (for C), and stdint.h and cstdint (for C++)
• Types: int8_t, uint16_t, uint32_t, int_64_t etc.

– They result in hardware which is not bit-accurate and can give sub-standard QoR

Vivado HLS provides bit-accurate types in both C and C++

– Allow any arbitrary bit-width to be specified
– Hence designers can improve the QoR of the hardware by specifying exact data widths

• Can be specified in the code and simulated to ensure there is no loss of accuracy

Data Types and Bit-Accuracy

14- 4
Data Types 14- 4 © Copyright 2013 Xilinx

Code using native C int type

However, if the inputs will only have a max range of 8-bit
– Arbitrary precision data-types should be used

– It will result in smaller & faster hardware with the full required precision
– With arbitrary precision types on function interfaces, Vivado HLS can propagate the correct bit-widths

throughout the design

Why is arbitrary precision Needed?

Data Types 14- 5 © Copyright 2013 Xilinx

There are 4 basic types you can use for HLS

– Standard C/C++ Types
– Vivado HLS enhancements to C: apint
– Vivado HLS enhancements to C++: ap_int, ap_fixed
– SystemC types

HLS & C Types

14- 6
Data Types 14- 6 © Copyright 2013 Xilinx

C and C++ Data Types

Arbitrary Precision Data Types

System C Data Types

Floating Point Support

Summary

Outline

Data Types 14- 7 © Copyright 2013 Xilinx

For C

– Vivado HLS types apint can be used
– Range: 1 to 1024 bits
– Specify the integers as shown and just use them like any other variable

There are two issues to be aware of

– C compilation : YOU MUST use apcc to simulate (no debugger support)
– Be aware of integer promotion issues

Arbitrary Precision : C apint types

#include ap_cint.h

void foo_top (…) {

int9 var1; // 9-bit
uint10 var2; // 10-bit unsigned

#include ap_cint.h

void foo_top (…) {

int9 var1; // 9-bit
uint10 var2; // 10-bit unsigned

Include header file

Failure to use apcc to compile the C will result in
INCORRECT results

This only applies to C
NOT C++ or SystemC

14- 8
Data Types 14- 8 © Copyright 2013 Xilinx

apcc
– Command line compatible with gcc
– Required to support arbitrary precision for C
– Use apcc at the Vivado HLS CLI (shell)

apcc understands bit-accurate types

– Once you create bit-accurate types you must re-validate the C
– It’s the only way to discover rounding and truncation issues

• It’s fast in C !!!

Using apcc

#include “ap_cint.h”

int3 ex_bit_accurate (

int3 x1,

int3 y1
) {

return x1+y1;

}

#include “ap_cint.h”

int3 ex_bit_accurate (

int3 x1,

int3 y1
) {

return x1+y1;

}

00 00 11 0000 00 00……
00 00 11 0000 00 00……

00 11 00 0000 00 00……
+

gcc simulation

2
2

4

00 11 00
00 11 00

11 00 00
+

apcc simulation

2
2

-4

x1
y1

return

Given: x1=2
y1=2 Simulates as

hardware

shell> apcc –o my_test test.c test_tb.c shell> apcc –o my_test test.c test_tb.c

Data Types 14- 9 © Copyright 2013 Xilinx

Integer promotion

– The apcc utility must still obey standard C/gcc rules and protocols
– Integer promotion:

• If the operator result is a larger type �
• The result is promoted to the target type (on 8, 16, 32 or 64 boundaries)

Integer Promotion

00 00 00 0000 11 0000
00 00 00 0000 11 0000

00 00 00 0000 00 001 00*

Result in Hex

65536
65536

0

a
b

Integer promotion promotes a*b to
32-bit then assigns this to tmp: the

top-bits are lost

Solution: cast before
the operation tmp = (int36)a * (int36)b;tmp = (int36)a * (int36)b;

00 00 00 0000 11 0000
00 00 00 0000 11 0000

00 00 00 0000 00 000011* 4294967296

a
b

65536
65536

00 00 00 0000 00 000000 0

#include "ap_cint.h"

int36 mult (int18 a,int18 b) {
int36 tmp;
tmp = a * b;
return tmp;

}

#include "ap_cint.h"

int36 mult (int18 a,int18 b) {
int36 tmp;
tmp = a * b;
return tmp;

}

Given:
a=0x10000
b=0x10000

Data Types 14- 10 © Copyright 2013 Xilinx

C apint types: Bit-Selection & Manipulation

Function Example

Length Returns the length of the variable. res=apint_bitwidthof(var);

Concatenation Concatenation low to high res=apint_concatenate(var_high, var_low)

Get a range Return a bit-range from high to low. res= apint_get_range(var, high,low)

Set a range Reserve the bits in the variable apint_set_range(res, high, low, res)

(n)and_reduce (N)And reduce all bits. bool t = apint_(n)and_reduce(var);

(n)or_reduce (N)Or reduce all bits bool t = apint_(n)or_reduce(var);

X(n)or_reduce X(N)or reduce all bits bool t = apint_x(n)or_reduce(var);

Get a bit Get a specific bit res=apint_get_bit(var, bit-number)

Set bit value Sets the value of a specific bit apint_set_bit(res, bit-number)

Print value Print the value of an apint variable apint_print(int#N value, int radix));

Print value to file Print the value of an apint variable to a file apint_fprint(FILE* file, int#N value, int radix)

14- 11
Data Types 14- 11 © Copyright 2013 Xilinx

For C++

– Vivado HLS types ap_int can be used
– Range: 1 to 1024 bits

� Signed: ap_int<W>
� Unsigned: ap_uint<W>

– The bit-width is specified by W

C++ compilation

– Use g++ at the Vivado HLS CLI (shell)
• Include the path to the Vivado HLS header file

Arbitrary Precision : C++ ap_int types

#include ap_int.h

void foo_top (…) {

ap_int<9> var1; // 9-bit
ap_uint<10> var2; // 10-bit unsigned

#include ap_int.h

void foo_top (…) {

ap_int<9> var1; // 9-bit
ap_uint<10> var2; // 10-bit unsigned

Include header file

shell> g++ –o my_test test.c test_tb.c -I$VIVADO_HLS_HOME/includeshell> g++ –o my_test test.c test_tb.c -I$VIVADO_HLS_HOME/include

14- 12
Data Types 14- 12 © Copyright 2013 Xilinx

C++ Arbitrary Precision Types are supported in Microsoft Visual Studio Compiler

– Simply include the Vivado HLS directory $(VIVADO_HLS_HOME)/include
– Note: C designs using arbitrary precision types (apint) must still use apcc

C++ Designs using AP_INT types

– In the MVS Project
• Click Project
• Click Properties
• In the panel that shows up, select C/C++
• Select general
• Click on additional include directories and add the path

Microsoft Visual Studio Support

14- 13
Data Types 14- 13 © Copyright 2013 Xilinx

Fully Supported for all Arithmetic operator

Methods for type conversion

AP_INT operators & conversions

Operations

Arithmetic + - * / % ++ --

Logical ~ !

Bitwise & | ^

Relational > < <= >= == !=

Assignment *= /= %= += -=
<<= >>= &= ^= |=

Methods Example

To integer Convert to a integer type res = var.to_int();

To unsigned integer Convert to an unsigned integer type res = var.to_uint();

To 64-bit integer Convert to a 64-bit long long type res = var.to_int64();

To 64-bit unsigned integer Convert to an unsigned long long type res = var.to_uint64();

To double Convert to double type res = var.double();

14- 14
Data Types 14- 14 © Copyright 2013 Xilinx

Methods Example

Length Returns the length of the variable. res=var.length;

Concatenation Concatenation low to high res=var_hi.concat(var_lo);
Or res= (var_hi,var_lo)

Range or Bit-select Return a bit-range from high to low or a specific bit. res=var.range(high bit,low bit);
Or res=var[bit-number]

(n)and_reduce (N)And reduce all bits. bool t = var.and_reduce();

(n)or_reduce (N)Or reduce all bits bool t = var.or_reduce();

X(n)or_reduce X(N)or reduce all bits bool t = var.xor_reduce();

Reverse Reserve the bits in the variable var.reverse();

Test bit Tests if a bit is true bool t = var.test(bit-number)

Set bit value Sets the value of a specific bit var.set_bit(bit-number, value)

Set bit Set a specific bit to one var.set(bit-number);

Clear bit Clear a specific bit to zero var.clear(bit-number);

Invert Bit Invert a specific bit var.invert(bit-number);

Rotate right Rotate the N-bits to the right var.rrotate(N);

Rotate left Rotate the N-bits to the left var.lrotate(N);

Bitwise Invert Invert all bits var.b_not();

Test sign Test if the sign is negative (return true) bool t = var.sign();

AP_INT Bit Manipulation methods

14- 15
Data Types 14- 15 © Copyright 2013 Xilinx

Support for fixed point datatypes in C++

– Include the path to the ap_fixed.h header file
– Both signed (ap_fixed) and unsigned types (ap_ufixed)

Advantages of Fixed Point types

– The result of variables with different sizes is automatically taken care of
– The binary point is automatically aligned

• Quantization: Underflow is automatically handled
• Overflow: Saturation is automatically handled

Arbitrary Precision : C++ ap_fixed types

#include ap_fixed.h

void foo_top (…) {

ap_fixed<9, 5, AP_RND_CONV, AP_SAT> var1; // 9-bit,
// 5 integer bits, 4 decimal places

ap_ufixed<10, 7, AP_RND_CONV, AP_SAT> var2; // 10-bit unsigned
// 7 integer bits, 3 decimal places

#include ap_fixed.h

void foo_top (…) {

ap_fixed<9, 5, AP_RND_CONV, AP_SAT> var1; // 9-bit,
// 5 integer bits, 4 decimal places

ap_ufixed<10, 7, AP_RND_CONV, AP_SAT> var2; // 10-bit unsigned
// 7 integer bits, 3 decimal places

$VIVADO_HLS_HOME/include/ap_fixed.h

Alternatively, make the result variable large enough such that overflow or
underflow does not occur

14- 16
Data Types 14- 16 © Copyright 2013 Xilinx

Fixed point types are specified by

– Total bit width (W)
– The number of integer bits (I)
– The quantization/rounding mode (Q)
– The overflow/saturation mode (O)
– The number of saturation bits

Definition of ap_fixed type

Description
W Word length in bits
I The number of bits used to represent the integer value (the number of bits above the decimal point)

Q Quantization mode (modes detailed below) dictates the behavior when greater precision is generated than can be defined by the LSBs.

AP_Fixed Mode Description
AP_RND Rounding to plus infinity
AP_RND_ZERO Rounding to zero
AP_RND_MIN_INF Rounding to minus infinity
AP_RND_INF Rounding to infinity
AP_RND_CONV Convergent rounding
AP_TRN Truncation to minus infinity
AP_TRN_ZERO Truncation to zero (default)

O Overflow mode (modes detailed below) dictates the behavior when more bits are required than the word contains.

AP_Fixed Mode Description
AP_SAT Saturation
AP_SAT_ZERO Saturation to zero
AP_SAT_SYM Symmetrical saturation
AP_WRAP Wrap around (default)
AP_WRAP_SM Sign magnitude wrap around

N The number of saturation bits in wrap modes.

Binary point : W = I + B

ap_[u]fixed<W, I , Q, O , N> ap_[u]fixed<W, I , Q, O , N>

I-1I-1 -1-1 …… -B-B11 00……

14- 17Data Types 14- 17 © Copyright 2013 Xilinx

Quantization mode

– Determines the behavior when an operation generates more precision in the LSBs than is available

Quantization Modes (rounding):

– AP_RND, AP_RND_MIN_IF, AP_RND_IF
– AP_RND_ZERO, AP_RND_CONV

Quantization Modes (truncation):

– AP_TRN, AP_TRN_ZERO

Quantization Modes

14- 18
Data Types 14- 18 © Copyright 2013 Xilinx

AP_RND_ZERO: rounding to zero

– For positive numbers, the redundant bits are truncated
– For negative numbers, add MSB of removed bits to the remaining bits.
– The effect is to round towards zero.

• 01.01 (1.25 using 4 bits) rounds to 01.0 (1 using 3 bits)
• 10.11 (-1.25 using 4 bits) rounds to 11.0 (-1 using 3 bits)

AP_RND_CONV: rounded to the nearest value

– The rounding depends on the least significant bit
– If the least significant bit is set, rounding towards plus infinity
– Otherwise, rounding towards minus infinity

• 00.11 (0.75 using 4-bit) rounds to 01.0 (1.0 using 3-bit)
• 10.11 (-1.25 using 4-bit) rounds to 11.0 (-1.0 using 3-bit)

Quantization Modes: Rounding

14- 19
Data Types 14- 19 © Copyright 2013 Xilinx

AP_TRN: truncate

– Remove redundant bits. Always rounds to minus infinity
– This is the default.

• 01.01(1.25) � 01.0 (1)

AP_TRN_ZERO: truncate to zero

– For positive numbers, the same as AP_TRN
• For positive numbers: 01.01(1.25) � 01.0(1)

– For negative numbers, round to zero
• For negative numbers: 10.11 (-1.25) � 11.0(-1)

Quantization Modes: Truncation

14- 20
Data Types 14- 20 © Copyright 2013 Xilinx

Overflow mode

– Determines the behavior when an operation generates more bits than can be satisfied by the MSB

Overflow Modes (saturation)

– AP_SAT, AP_SAT_ZERO, AP_SAT_SYM

Overflow Modes (wrap)

– AP_WRAP, AP_WRAP_SM
– The number of saturation bits, N, is considered when wrapping

Overflow Modes

14- 21
Data Types 14- 21 © Copyright 2013 Xilinx

AP_SAT: saturation

– This overflow mode will convert the specified value to MAX for an overflow or MIN for an underflow
condition

– MAX and MIN are determined from the number of bits available
AP_SAT_ZERO: saturates to zero

– Will set the result to zero, if the result is out of range
AP_SAT_SYM: symmetrical saturation

– In 2’s complement notation one more negative value than positive value can be represented
– If it is desirable to have the absolute values of MIN and MAX symmetrical around zero, AP_SAT_SYM

can be used
– Positive overflow will generate MAX and negative overflow will generate -MAX

• 0110(6) => 011(3)
• 1011(-5) => 101(-3)

Overflow Mode: Saturation

14- 22
Data Types 14- 22 © Copyright 2013 Xilinx

AP_WRAP_SM, N = 0

– This mode uses sign magnitude wrapping
– Sign bit set to the value of the least significant deleted bit
– If the most significant remaining bit is different from the original MSB, all the remaining bits are inverted
– IF MSBs are same, the other bits are copied over

• Step 1: First delete redundant MSBs. 0100(4) => 100(-4)
• Step 2: The new sign bit is the least significant bit of the deleted bits. 0 in this case
• Step 3: Compare the new sign bit with the sign of the new value

– If different, invert all the numbers. They are different in this case
• 011 (3) 11

AP_WRAP_SM, N > 0

– Uses sign magnitude saturation
– Here N MSBs will be saturated to 1
– Behaves similar to case where N = 0, except that positive numbers stay positive and negative numbers stay

negative

Overflow Mode: Wrap Sign Magnitude

14- 23
Data Types 14- 23 © Copyright 2013 Xilinx

Fully Supported for all Arithmetic operator

Methods for type conversion

AP_FIXED operators & conversions

Operations

Arithmetic + - * / % ++ --

Logical ~ !

Bitwise & | ^

Relational > < <= >= == !=

Assignment *= /= %= += -=
<<= >>= &= ^= |=

Methods Example

To integer Convert to a integer type res = var.to_int();

To unsigned integer Convert to an unsigned integer type res = var.to_uint();

To 64-bit integer Convert to a 64-bit long long type res = var.to_int64();

To 64-bit unsigned integer Convert to an unsigned long long type res = var.to_uint64();

To double Convert to double type res = var.double();

To ap_int Convert to an ap_int res = var.to_ap_int();
14- 24
Data Types 14- 24 © Copyright 2013 Xilinx

Methods for bit manipulation

AP_FIXED methods

Methods Example

Length Returns the length of the variable. res=var.length;

Concatenation Concatenation low to high res=var_hi.concat(var_lo);
Or res= (var_hi,var_lo)

Range or Bit-select Return a bit-range from high to low or a specific bit. res=var.range(high bit,low bit);
Or res=var[bit-number]

14- 25
Data Types 14- 25 © Copyright 2013 Xilinx

The hls_math.h library

– Now includes fixed-point functions for sin, cos and sqrt

– The sin and cos functions are all 32-bit ap_fixed<32,Int_Bit>
• Where Int_Bit specifies the number of integer bits

– The sqrt function is any width but must have a decimal point
• Cannot be all intergers or all bits

– The accuracy above is quoted with respect to the equivalent floating point version

Fixed Point Math Functions (Starting 2013.3)

© Copyright 2013 XilinxData Types 14- 26

C and C++ Data Types

Arbitrary Precision Data Types

System C Data Types

Floating Point Support

Summary

Outline

Data Types 14- 27 © Copyright 2013 Xilinx

SystemC is an IEEE standard (IEEE 1666)

– C++ class libraries
– Allows design and simulation with concurrency
– Provides a library of arbitrary precision types

• sc_int, sc_uint, sc_bigint (int > 64 bit), sc_fixed, etc.

SystemC support

– Vivado HLS supports SystemC 1.3 Synthesizable subset1

SystemC Compilation

– Compile with g++
– Include the SystemC files from the Vivado HLS tree

SC Types

– Can be used in C++ designs without the need to convert the entire design to SystemC

Arbitrary Precision : SystemC

shell> g++ –o my_test test.c test_tb.c \
-I$Vivado HLS_HOME\Win_x86\tools\systemc\include \
-lsystemc \
-L$Vivado HLS_HOME\Win_x86\tools\systemc\include\lib

shell> g++ –o my_test test.c test_tb.c \
-I$Vivado HLS_HOME\Win_x86\tools\systemc\include \
-lsystemc \
-L$Vivado HLS_HOME\Win_x86\tools\systemc\include\lib

Data Types 14- 28 © Copyright 2013 Xilinx

C and C++ Data Types

Arbitrary Precision Data Types

System C Data Types

Floating Point Support

Summary

Outline

Data Types 14- 29 © Copyright 2013 Xilinx

Synthesis for floating point

– Data types (IEEE-754 standard compliant)
• Single-precision

� 32 bit: 24-bit fraction, 8-bit exponent

• Double-precision
� 64 bit: 53-bit fraction, 11-bit exponent

Support for Operators

– Vivado HLS supports the Floating Point (FP) cores for each Xilinx technology
• If Xilinx has a FP core, Vivado HLS supports it
• It will automatically be synthesized

– If there is no such FP core in the Xilinx technology, it will not be in the library
• The design will be still synthesized

Floating Point Support

14- 30
Data Types 14- 30 © Copyright 2013 Xilinx

Floating Point Cores

14- 31
Data Types 14- 31 © Copyright 2013 Xilinx

Vivado HLS provides support for many math functions

– Even if no floating-point core exists
– These functions are implemented in a bit-approximate manner
– The results may differ within a few Units of Least Precision (ULP) to the C/C++ standards

Use math.h (C) or cmath.h (C++)

– The functions will be synthesized automatically
– The C simulation results may differ from the RTL simulation results
– Use a test bench which checks for ranges: not == or !=

Replace math.h or cmath.h with Vivado HLS header file “hls_math.h” Or keep

math/cmath and “add_files hls_lib.c”

– The C simulation will match the RTL simulation
– The C simulation may differ from the C simulation using math/cmath (or math/cmath without hls_lib.c)

Support for Math Functions

More Details are available in the Coding Style Guide
chapter in the User Guide

More Details are available in the Coding Style Guide
chapter in the User Guide

Data Types 14- 32 © Copyright 2013 Xilinx

Floating C point functions ***f

– There is no double-precision implementation
– C++ functions will overload as per the C++

standard
• Can be used with double or single precision

More specific details are in the User

Guide

– Refer to the Coding Style Guide chapter: C
Libraries

Supported Math Functions

For more information on floating point refer to
Application Note Floating Point Design with Vivado

HLS

For more information on floating point refer to
Application Note Floating Point Design with Vivado

HLS

Data Types 14- 33 © Copyright 2013 Xilinx

The following highlights some typical use scenarios

– Example values

When using sqrt() function

– It is from math.h which is a C function, not C++

Understand that sqrt() is 64-bit and sqrtf() is 32-bit

Type conversions can be used

Example on using Floating Point Types

double foo_d = 3.1459;
float foo_f = 3.1459;
ap_fixed<14,4> foo_fx = -1.4142;
int foo_i = 42;

double foo_d = 3.1459;
float foo_f = 3.1459;
ap_fixed<14,4> foo_fx = -1.4142;
int foo_i = 42;

Using ap_fixed requires:
• C++

• $Vivado HLS_HOME/include/ap_fixed.h

ap_fixed<14,4> var_fx = sqrtf(foo_fx); // fixed-point to single precision conversion
// Fixed � 32-bit sqrt core � float to fixed conversion

int var_i = sqrtf(foo_i); // int to float conversion
// Int � 32-bit sqrt � float to int

ap_fixed<14,4> var_fx = sqrtf(foo_fx); // fixed-point to single precision conversion
// Fixed � 32-bit sqrt core � float to fixed conversion

int var_i = sqrtf(foo_i); // int to float conversion
// Int � 32-bit sqrt � float to int

extern "C" float sqrtf(float);extern "C" float sqrtf(float);

double var_d = sqrt(foo_d); // 64-bit sqrt core
float var_f = sqrtf(foo_f); // This will lead to a single precision sqrt core

var_f = sqrt(foo_f); // Still 64-bit, with format conversion cores (single to double and back)

double var_d = sqrt(foo_d); // 64-bit sqrt core
float var_f = sqrtf(foo_f); // This will lead to a single precision sqrt core

var_f = sqrt(foo_f); // Still 64-bit, with format conversion cores (single to double and back)

Required if it’s a C++ function

Using sqrt instead of sqrtf would
imply a single to double

conversion and back

14- 34
Data Types 14- 34 © Copyright 2013 Xilinx

C and C++ Data Types

Arbitrary Precision Data Types

System C Data Types

Floating Point Support

Summary

Outline

Data Types 14- 35 © Copyright 2013 Xilinx

C and C++ have standard types created on the 8-bit boundary

– char (8-bit), short (16-bit), int (32-bit), long long (64-bit)

Vivado HLS supports SystemC 1.3 Synthesizable subset

Arbitrary precision in C is supported using apint and ap_int in C++

– Compile using apcc for arbitrary precision
– Arbitrary precision types can define bit-accurate operators leading to better QoR

Fixed point precision is supported in C++

– Both signed (ap_fixed) and unsigned types (ap_ufixed)

Summary

Data Types 14- 36 © Copyright 2013 Xilinx

Various quantization and overflow modes supported

– Quantization
• AP_RND, AP_RND_ZERO, AP_RND_MIN_INF, AP_RND_INF, AP_RND_CONV,

AP_TRN, AP_TRN_ZERO

– Overflow
• AP_SAT, AP_SAT_ZERO, AP_SAT_SYM, AP_WRAP, AP_WRAP_SYM

Both single- and double-precision floating point data types are supported

– If a corresponding floating point core is available then it will automatically be used
– If floating point core is not available then Vivado HLS will generate the RTL model

Summary

Data Types 14- 37 © Copyright 2013 Xilinx

